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•
 

Fuel cell insufficiently mature, partly due to limited 
lifetime
⇒

 
Need for diagnosis tools to detect and classify failures 

or faulty operation modes so as to prevent or limit 
degradation.

•
 

Important causes of degradations / failures:
–

 
Bad water management (flooding, drying):  usually reversible and

 
quite easy 

to control.
–

 
Poisoning: reversibility = f(pollutant

 
nature, concentration), hardly 

controllable for air pollution, more easily for fuel pollutant like CO.
–

 
Carbon corrosion, catalyst oxidation; usually irreversible and impossible to 
control, particularly at stack level.

⇒
 

focus on water management and CO poisoning 
issues.

Scope of the study
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•
 

Previous
 

systems' limitations:
Many impedancemeters

 

of the pubic market are limited to a few Volts with regard to 
the measurement voltage.

⇒
 

Development
 

of a new EIS system:
High resolution digital analogic converter (26 bits).
32 acquisition channels (1 for I + 31 for U up to 300V).
Allows 2 simultaneous measurements (stack + individual cells or groups of cells).

EIS measurement for high power stack

Stack impedance spectra 
are close and do not depend 
on time

Large dispersion in cell 
impedance spectra due to
- cell position in the stack,
- cell state of health.
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Developped
 

acquisition tool
 

principle

Data treatment cardboard (AMR 7)
• Data acquisition and treatment.software. (Labview)
• Control and reading of data coming from test bench.

Imput signal generation:
• Current steps.
• EIS.

Ucell
Ustack

Cell nr

PAC

Stack

Acquisition cardboard
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Acquisition cardboard
•

 
Basic principle:

Generation of a bias current:

Error < 1% (can be reduced but with 
sensitivity loss)

y = 0.0396x - 0.0066
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•
 

GMR Performances:

Ustack

or

Ucell

Ibias Rbias

Intrinsic galvanic 
insulationB

r

UGMR

Usupply

0V

GMR cell

Measurement of UGMR 
similar with Wheatstone 
bridge principle

•
 

Integration:

Amplifier & 
multiplexer
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Experimentals

•
 

3 stacks technologies:

•
 

Design of experiment
 

methodology:
6 parameters: anodic and cathodic overstoichiometric ratios, fuel and oxident
relative humidities, fuel CO content, stack temperature.
26-2 (16 experiments) design of experiments, with aliases.

•
 

Characterisations:
Current steps profile:

Current + Individual and total stack voltages: 100 kHz during 5 to 10s.
Process regulation parameters + pressure drops: 1 Hz.

EIS.

3M
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stack during
 

a 
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5 cells
 

stack resistivity and individual
 

cell
 resistivity scattering

Manip 4 ha = hc = 35%, sa = 2.5, sc = 3, T = 80°C

Manip 6 ha = 35%, hc = 75%, sa = 1.5, sc = 3, T = 80°C

Manip 7 ha = 75%, hc = 35%, sa = sc = 1.8, T = 80°C

Manip 12 ha = 75%, hc = 35%, sa = 2.5, sc = 3, T = 50°C

Manip 14 ha = hc = 75%, sa = 1.5, sc = 3, T = 50°C

Manip 15 ha = hc = 75%, sa = 2.5, sc = 1.5, T = 80°C

Manip 0 ha = hc = 50%, sa = 2, sc = 2.25, T = 65°C

Ref CEA ha = hc = 50%, sa = sc = 2, T = 80°C
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Physical
 

model

•
 

Input variables:
–

 

H2

 

O, H2

 

, O2

 

and CO partial pressures, H+ concentration.
–

 

fraction of catalytic sites poisoned by CO.
–

 

water content in membrane and GDLs.

•
 

1D (⊥
 

to MEA plane) model taking into account:
–

 

kinetics of electrochemical reactions.
–

 

diffusion-migration (mass conservation equation).
–

 

water balance in each compartment : GC, GDL, membrane,…(cf. Benziger
 

et al.)

•
 

Model simplification by :
–

 

discretization
 

for approximation of conservation equations (via orthogonal 
collocation method).

–
 

Analysis of the different time-scales phenomena (in adsorption/desorption, water 
diffusion)

⇒Reduced
 

0D model
 

describing
 

I-U relation
 

in various
 

operating
 

conditions.

•
 

Serie-parallel "assembly" of the model to 
simulate a cell heterogeneity and a stack.

•
 

Output: polarization and EIS curves, are 
determined analytically
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diagnosis
 

algorithm

ExperimentalExperimental
 

parametersparameters

DiagnosisDiagnosis
 decisiondecision

ThresholdThreshold
 

functionfunction
Model output Model output 
in case of no in case of no 

floodingflooding

-- FloodedFlooded

 

(1)(1)
-- Not Not floodedflooded

 

(0)(0)

ResidualResidual
 calculationcalculation

Model inputsModel inputs

Fuel Cell

NN 
Black-Box 

model

+-

expPΔ

calcPΔ

exp

exp

P

PPcalc

Δ

ΔΔ −
[ ]CTdwpt °

[ ]AI

[ ]CT °

[ ]1min. −NlQ
Flooded cell

Non flooded cell
s0

(No flooding)



SINTEF Conference – Trondheim – 24/06/2009 –- 17/20

•
 

Definitions:
Neuron = succession of 2 
mathematical functions: 
multiparameter linear combination + 
other (e.g. identity, sigmoid, linear,…)

Layer = group of unconnected 
neurons.

•
 

How is it build (3 steps) ?
Architecture definition:

Inputs = experimental parameters.
Number of layers ≥ 2.
Number of neuron/layer ⇔ compromise 
risks of overlearning and underlearning.

w6

w7
Ustack

ΔP

I

Tdew

T

Q

w1

w4

w9

w5

w8

w3

w2

w0

wi ⇔ coefficients of multiparameter 
linear combination function

Neural network ?...

Database random spliting:

20%

70%

10%

Learning

Validation

Test

Learning + Validation:
determination of wi and bi by iterative 
interpolation.
optimization of iteration number on learning:

Test ⇔ the network ability to predict the output 
l

underlearning overlearningPrediction 
error

nIterration

= f((w0 * I) + (w1 * Tdew ) + b0 + b1 )

= f((w9 * Q) + b9)
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Results: Neural network build-up

T [°C] ∈

 

[35-40]

Tdwpt [°C] ∈

 

[25-50]

I [A] ∈

 

[0-35]

Q [Nl.min-1] ∈

 

[30-55]

Database:

Learning on DP = f(t):

Threshold definition: 
s = 3*|σ(residual)|

Test:
Not flooded cell, data not previously 
seen by the Neural Network

One punctual 
wrong alarm
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Results: Model application to flooding
 

diagnosis
σx2

Flooding
 

detection: Detection
 

of flooding
 and recovery:

s
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Conclusions & next
 

steps

•
 

Main achievements:
Developments of:

A diagnosis model for water management issues.
A new EIS system for operation at high stack voltages (up to 300 V).
A hardware for acquisition, treatment and storage of system data during 
operation.

•
 

Next steps:
Design of experiment analysis on different 20 cells stacks by EIS and current steps
(in progress).
Extend diagnosis model to CO poisoning detection (in progress).
Generalize the diagnosis model to different  PEMFC stack technologies (in progress).
Interface the diagnosis model with the hardware in a diagnosis tool to be validated 
on a 20 cells stack.
Export the methodology to develop a tool for other fuel cells technologies: 
FCH-JU JTI CP 2008 "GENIUS" project for SOFCs.
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