Elaboration of a non intrusive diagnosis tool for the detection of water management and CO poisoning defaults in PEMFC stacks

FCLAB

Systèmes pile à combustible

 \succ Nadia STEINER

Sébastien WASTERLAIN Daniel HISSEL Denis CANDUSSO Fabien HAREL Xavier FRANCOIS AREVA HELION

Vincent RAIMBAULT

Alain GIRAUD Fabrice AUZANNEAU Sébastien ROSINI

Pierre-Alexandre BLIMAN Mohamad SAFA Michel SORINE

- Introduction
- Developped measurements
- Stacks characterization
- Developped model
- Conclusions and future work

Scope of the study

- Fuel cell insufficiently mature, partly due to limited lifetime
 - \Rightarrow Need for diagnosis tools to detect and classify failures or faulty operation modes so as to prevent or limit degradation.
- Important causes of degradations / failures:
 - Bad water management (flooding, drying): usually reversible and quite easy to control.
 - Poisoning: reversibility = f(pollutant nature, concentration), hardly controllable for air pollution, more easily for fuel pollutant like CO.
 - Carbon corrosion, catalyst oxidation; usually irreversible and impossible to control, particularly at stack level.

\Rightarrow focus on water management and CO poisoning

issues.

SINTEF Conference - Trondheim - 24/06/2009 -- 3/20

Basics on diagnostic

- Introduction
- Developpement of new measurement tools
 - > New high power impedancemeter.
 - > Integrated acquisition cardboard.
- Stacks characterization
- Developped algorithm
- Conclusions and future work

EIS measurement for high power stack FC

• Previous systems' limitations:

Many impedancemeters of the pubic market are limited to a few Volts with regard to the measurement voltage.

\Rightarrow Development of a new EIS system:

>High resolution digital analogic converter (26 bits).

>32 acquisition channels (1 for I + 31 for U up to 300V).

>Allows 2 simultaneous measurements (stack + individual cells or groups of cells).

→Large dispersion in cell impedance spectra due to

- cell position in the stack,
- cell state of health.

eDF

→ Stack impedance spectra are close and <u>do not depend</u> on time

SINTEF Conference – Trondheim – 24/06/2009 – 6/20

Developped acquisition tool principle

Acquisition cardboard

• Basic principle:

Generation of a bias current:

GMR Performances:

Error < 1% (can be reduced but with sensitivity loss)

bridge principle

SINTEF Conference – Trondheim – 24/06/2009 – 8/20

- Introduction
- Developpement of new measurement tools
- Stacks characterization
- Developped algorithm
- Conclusions and future work

Experimentals

• 3 stacks technologies:

3M

Design of experiment methodology:

AREVA

HELION

- > 6 parameters: anodic and cathodic overstoichiometric ratios, fuel and oxident relative humidities, fuel CO content, stack temperature.
- $> 2^{6-2}$ (16 experiments) design of experiments, with aliases.

Characterisations:

- Current steps profile:
 - ✓ Current + Individual and total stack voltages: 100 kHz during 5 to 10s.
 - ✓ Process regulation parameters + pressure drops: 1 Hz.

≻ EIS.

eDF

SINTEF Conference – Trondheim – 24/06/2009 –- 10/20

SINTEF Conference – Trondheim – 24/06/2009 – 11/20

5 cells stack resistivity and individual cell resistivity scattering

SINTEF Conference – Trondheim – 24/06/2009 – 12/20

Transient behavior of 3M 20 cells stack during a current step from 0.5 A/cm² to 0.7 A/cm²

FIFFR

- Introduction
- Development of new measurement tools
- Stacks characterization
- Developped algorithms:
 - Physical model based.
 - Black box model based.
- Conclusions and future work

Physical model

• Input variables:

eDI

- H_2O , H_2 , O_2 and CO partial pressures, H^+ concentration.
- fraction of catalytic sites poisoned by CO.
- water content in membrane and GDLs.

• 1D (\perp to MEA plane) model taking into account:

- kinetics of electrochemical reactions.
- diffusion-migration (mass conservation equation).
- water balance in each compartment : GC, GDL, membrane,...(cf. Benziger et al.)

• Model simplification by :

- discretization for approximation of conservation equations (via orthogonal collocation method).
- Analysis of the different time-scales phenomena (in adsorption/desorption, water diffusion)

 \Rightarrow Reduced OD model describing I-U relation in various operating conditions.

- Serie-parallel "assembly" of the model to simulate a cell heterogeneity and a stack.
- Output: polarization and EIS curves, are determined analytically

INRIA

Flooding diagnosis algorithm

FCLAB Systèmes pile à combustible

FIFFR

SINTEF Conference – Trondheim – 24/06/2009 – 16/20

Neural network ?...

• Definitions:

- Neuron = succession of 2 mathematical functions: multiparameter linear combination + other (e.g. identity, sigmoid, linear,...)
- Layer = group of unconnected neurons.

 $w_i \Leftrightarrow$ coefficients of multiparameter linear combination function

edf

SINTEF Confer

• How is it build (3 steps) ?

- > Architecture definition:
 - ✓ Inputs = experimental parameters.
 - ✓ Number of layers ≥ 2.
 - ✓ Number of neuron/layer ⇔ compromise risks of overlearning and underlearning.

>Database random spliting:

- > Learning + Validation:
 - ✓ determination of w_i and b_i by iterative interpolation.
 - \checkmark optimization of iteration number on learning:

 $ightarrow Test \Leftrightarrow$ the network ability to predict the output

Results: Neural network build-up

Database:

Τ [`C]	∈ [35-40]
Tdwpt [°C]	∈ [25-50]
I [A]	∈ [0-35]
$Q[NI.min^{-1}]$	∈ [30-55]

Learning on DP = f(t):

Test:

Not flooded cell, data not previously seen by the Neural Network

SINTEF Conference – Trondheim – 24/06/2009 – 18/20

Results: Model application to flooding diagnosis

Flooding detection:

Detection of flooding and recovery:

Conclusions & next steps

Main achievements:

- > Developments of:
 - \checkmark A diagnosis model for water management issues.
 - \checkmark A new EIS system for operation at high stack voltages (up to 300 V).
 - ✓ A hardware for acquisition, treatment and storage of system data during operation.

• Next steps:

- Design of experiment analysis on different 20 cells stacks by EIS and current steps (in progress).
- > Extend diagnosis model to CO poisoning detection (in progress).
- > Generalize the diagnosis model to different PEMFC stack technologies (in progress).
- > Interface the diagnosis model with the hardware in a diagnosis tool to be validated on a 20 cells stack.
- Export the methodology to develop a tool for other fuel cells technologies: FCH-JU JTI CP 2008 "<u>GENIUS</u>" project for SOFCs.

